
MATCAS

a MATlab tool using Coefficient Approximation for the automatic solution of multichannel

Schrödinger equations

Copyright 2012 Veerle Ledoux
Department of Applied Mathematics and Computer Science
Ghent University

what

A Matlab tool for the automatic computation of bound-state eigenvalues and wavefunctions of coupled-channel
Schrödinger equations. The user may specify the required eigenvalue by its index.

Details on the numerical methods can be found in:
V. Ledoux, M. Van Daele, Automatic computation of quantum-mechanical bound states and wavefunctions
(2012).

Programming language

Tested with Matlab(R) version newer than 6.5. However, in principle, any recent version of Matlab(R) should
work.

How to start

Download the package from http://www.nummath.ugent.be/SLsoftware
To run Matcas the source files must be integrated into the Matlab path. This can be achieved by using the
addpath command of Matlab. Or change your current folder to the Matcas folder. To run the example.m files,
enter e.g. example1 in the Matlab command window.

Structure and Usage

The package consists of several .m files: some example driver scripts and two files containing the Matlab
functions computeEigenvalues and computeEigenfunction. Some additional auxiliary functions are collected
in the folder called source. A user of the package will, however, not call a function from the source folder
directly.

• example1.m / example11.m

example driver scripts
Each example.m file computes the eigenvalues and eigenfunctions of a specific Schrodinger problem. The
example.m files illustrate how to specify the problem and how to call the functions computeEigenvalues
and computeEigenfunction.

As an example we consider the problem from [L.Gr. Ixaru, Phys. Rev. A 77 (2008) 064102] which has
known eigenvalues and solutions. The 2× 2 matrix potential for x ≥ 0, is given by

V1,1(x) = V2,2(x) = VPT(x; 45, 1) + VPT(x; 39/2, 1/2) (1)
V1,2(x) = V2,1(x) = VPT(x; 45, 1)− VPT(x; 39/2, 1/2) (2)

where VPT is the Pöschl-Teller potential

VPT(x; ν, α) = −ν/ cosh2(αx).

The wavefunction tends to zero when x→ +∞. In our experiments the infinite integration interval x ≥ 0
has been cut at x = 30. The following code computes some eigenvalues and an eigenfunction of this
problem.

% TEMPLATE

%Specify the endpoints of the integration interval:
system.a=0;
system.b=30;

%Specify the coefficient matrices of the boundary conditions:
system.A1=eye(2);
system.A2= zeros(2,2);
system.B1=eye(2);
system.B2= zeros(2,2);

%potential matrix function (function handle)
system.V=@potentialMatrix;

%Use the function computeEigenvalues to computes eigenvalues with specified index.
%Here indices 0 to 10, and input tolerance 1e-8
[EigvData,meshData]=computeEigenvalues(system,0,10,1e-8);

%The structure EigvData contains information on the computed eigenvalues:
disp([’Number of intervals in the mesh: ’ num2str(length(meshData.h))]);
disp(sprintf(’k \t E_k \t\t\t\t ErrEst \t status’))
for i=1:length(EigvData.eigenvalues)

disp(sprintf(’%-3.0f\t %-16.12f\t %-2.0e\t\t %d’, EigvData.indices(i),...
EigvData.eigenvalues(i), EigvData.errorEstimations(i),EigvData.status(i)));

end

%make plots of the eigenfunction corresponding to the first eigenvalue which
%has multiplicity 1
[x,Y,YP]=computeEigenfunction(system,meshData,EigvData.eigenvalues(1),1);
figure
plot(x,Y(1,:,1))
hold on
plot(x,Y(2,:,1),’r’)
title(’Eigenfunction’)
legend(’y_1(x)’,’y_2(x)’)
hold off
figure
plot(x,YP(1,:,1))
hold on
plot(x,YP(2,:,1),’r’)
hold off
xlabel(’x’)
title(’First derivative of eigenfunction’)
legend(’y’’_1(x)’,’y’’_2(x)’)

function r=potentialMatrix(x)
%returns the potential matrix evaluated in x

2

%x may be a vector of values: make sure that the entries are vectorized, e.g.
% x.^2 instead of x^2.
r=zeros(2,2,length(x));
r(1,1,:)=-45./cosh(1*x).^2-(39/2)./cosh(1/2*x).^2;
r(2,2,:)=-45./cosh(1*x).^2-(39/2)./cosh(1/2*x).^2;
r(1,2,:)=-45./cosh(1*x).^2+(39/2)./cosh(1/2*x).^2;
r(2,1,:)=-45./cosh(1*x).^2+(39/2)./cosh(1/2*x).^2;

end

• computeEigenvalues.m.

This .m-file implements the computeEigenvalues function:

[EigvData,meshData]=computeEigenvalues(system,kmin,kmax,tol)
INPUT:

- system: a structure containing information on the Schrodinger problem
system.a, system.b: endpoints of the integration interval
system.A1,system.A2:
system.B1,system.B2: parameters of the boundary conditions
system.V: function handle to the potential matrix

function
- kmin, kmax: lowest and highest index of the range of eigenvalues

to be computed
- tol: user input tolerance (~ relative error in the eigenvalue

approximations)
OUTPUT:

- eigvData: a Matlab structure
eigvData.eigenvalues = vector containing the eigenvalue

approximations
eigvData.status = vector of same length as eigvData.eigenvalues

eigvData.status(i)= 1 : no difficulties detected in the
approximation of the i-th eigenvalue

eigvData.status(i)= -1: the newton-raphson process didn’t
converge to an eigenvalue,
try a lower input tolerance

eigvData.status(i)= -2: too many iterations in the newton-
raphson process. The requested accuracy
may not have been reached.

eigvData.indices = eigenvalue indices

- meshData: structure collecting all data associated to the mesh
constructed
meshData.tol : expected accuracy for the results

computed over this mesh
meshData.v0: vector of V_0 matrices, length of the vector

equals the number of mesh intervals
meshData.v1: vector of {\bar V}_1 matrices, length of the vector

equals the number of mesh intervals
meshData.v2: vector of {\bar V}_2 matrices, length of the vector

equals the number of mesh intervals
meshData.h: vector containing the length of the mesh intervals
meshData.dimat: vector of D matrices (orthogonal matrix

used by the diagonalization process), the length of
the vector equals the number of mesh intervals

meshData.cu,cup,cv,cvp: C-coefficients used by the
sixth order CP algorithm

• computeEigenfunction.m

This .m-file implements the computeEigenfunction function:

3

function [x,YM,YPM]=computeEigenfunction(system,md,E,multiplicity)
%computes the eigenfunctions and their first order derivatives corresponding
% to the eigenvalue E in the meshpoints of the mesh given by the input argument md.
OUTPUT: x : vector of x-values (=meshpoints) where the eigenfunctions were

evaluated
YM: 3-dim matrix (n times nsteps times multiplicity)

contains information on the eigenfunctions
YM(i,j,k) = i’th element (1<=i<=dimension n of the system) in

the k’th eigenfunction evaluated in the jth meshpoint .
Each YM(:,:,k) with (1<= k <= multiplicity) represents an

eigenfunction.
YMP: similar for the first order derivatives

NOTE: the eigenfunction and its derivative are only evaluated in the meshpoints (the values of these
points are returned by the function computeEigenfunction in the vector x). This may not be sufficient
to produce a nice smooth plot of a higher eigenfunction. The evaluation of the eigenfunctions in user
specified points is future work.

• source\computeVcoeffs.m
The function computeVcoeffs returns the coefficient matrices Vm in the polynomial approximation of
degree 2 underlying the sixth order CP scheme:

V(xi + δ) ≈
2∑

m=0

Vmh
mP ∗m(δ/hi)

with P ∗m(δ/hi) the shifted Legendre polynomials and the matrix weigths Vm given by the method of least
squares:

V0 =
1
hi

∫ hi

0

V(xi + δ)dδ,

Vm =
(2m+ 1)
hm+1

i

∫ hi

0

V(xi + δ)P ∗m(δ/hi)dδ, m = 1, 2.

These weigths are computed by a Gauss-Legendre quadrature.

• source\constructMesh.m
This function implements the automatic stepsize selection algorithm.

• source\getBracket.m
This function generates a good initial guess for the Newton-Raphson procedure which is used in the
eigenvalue shooting process. The Prüfer procedure is applied to generate reasonably tight upper and
lower bounds for the eigenvalue Ek sought, i.e. a bracket [Ê, Ē] is determined such that I(Ê) = k and
I(Ē) = k + 1 or Ē − Ê < tol. E = (Ê + Ē)/2 is then passed as the initial trial value for the eigenvalue
Ek.

• source\getIndex.m
This function returns the value of the indexing function I(E) and thus implements the numerical Prüfer
procedure.

• source\getTransferMatrices.m
This function returns the entries U,U′,W,W′ of the propagation matrix for the sixth order CP scheme,
which are given by:

UD(hi) = ξ(Z) +
2∑

m=1

C(U)
m ηm(Z), (3)

hi(UD)′(hi) = Zη0(Z) +
2∑

m=0

C(U ′)
m ηm(Z), (4)

WD(hi)/hi = η0(Z) + C(W)
2 η2(Z), (5)

(WD)′(hi) = ξ(Z) +
2∑

m=1

C(W ′)
m ηm(Z) (6)

4

with

C(U)
1 = −V̄1/2 + [V̄1, V̄0]/24

C(U)
2 = −V̄2

1/24 + [4V̄1 − 3V̄2, V̄0]/24

C(U ′)
0 = V̄2/2 + [V̄1, V̄0]/24− [V̄1, V̄2]/120

C(U ′)
1 = −3V̄2/2− V̄2

1/24 + [V̄1 − V̄2, V̄0]/8

C(U ′)
2 = −7V̄2

1/24 + [V̄1, V̄2]/8 + [3V̄2, V̄0]

C(W)
2 = −V̄2/2 + [V̄1, V̄0]/24

C(W ′)
1 = V̄1/2 + [V̄1, V̄0]/24

C(W ′)
2 = −V̄2

1/24 + [−2V̄1 + 3V̄2, V̄0]/24

For notational brevity in the Cm matrices, the upper label D has been suppressed and we introduced
V̄s = Vsh

s+2
i , s = 0, 1, 2 and the matrix commutator notation [A,B] = AB−BA.

• source\shootForEigenvalue.m
This function implements the shooting algorithm

Algorithm 1 Shooting for the eigenvalue Ek

1: Input: a trial value E, a mesh a = x0 < x1 < · · · < xN = b, with stepsizes hi = xi+1 − xi.
2: Choose a meshpoint c = xm, 0 ≤ m ≤ N as the matching point.
3: Set up initial values for ΨL and ΨR satisfying the boundary conditions at a and b respectively.
4: repeat
5: for i = 0 to m− 1 do
6: Compute U(hi),W(hi),U′(hi),W′(hi) by the 6th order CA method.
7: Propagate ΨL over the interval [xi, xi+1]:

ΨL(xi+1) = [W(hi) + U(hi)ΨL(xi)][W′(hi) + U′(hi)ΨL(xi)]−1

8: end for
9: for i = N down to m+ 1 do

10: Compute U(hi),W(hi),U′(hi),W′(hi) by the 6th order CA method.
11: Propagate ΨR over the interval [xi−1, xi]:

ΨR(xi−1) = [−W(hi) + W′(hi)ΨR(xi)][U(hi)−U′(hi)ΨR(xi)]−1

12: end for
13: Adjust E to solve the equation det(ΨL(c)−ΨR(c)) = 0.
14: until E sufficiently accurate (e.g. until the difference between two subsequent E values is smaller than some

user input tolerance)

Disclaimer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

5

